ELSEVIER ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of thieno[3,4-d]-1,3-dithiol-2-one derivatives

Xin Chen a, Ronald L. Elsenbaumer a,b,*

- ^a Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
- ^bDepartment of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA

ARTICLE INFO

Article history: Received 24 February 2009 Accepted 31 March 2009 Available online 22 April 2009

Keywords: Thieno[3,4-d]-1,3-dithiol-2-one Halogenation Chloromethylation Substitution Synthesis

ABSTRACT

A series of mono-substituted and bis-substituted derivatives of thieno [3,4-*d*]-1,3-dithiol-2-one were prepared through halogenation, chloromethylation, and subsequent nucleophilic substitution reactions. Compounds were characterized by NMR, FI-IR, and HRMS.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Polythiophene and its derivatives are of great interest as conductive polymers owing to their characteristic electrochemical, electronic, and optical properties. The potential commercial applications include light-emitting diodes, smart windows, photovoltaic devices, and field effect transistors (FETs).² It has been recognized that the electrical and optical properties strongly depend on their structures. Recently, much attention has been focused on development of thiophene-based metallopolymers.3 Thieno[3,4-d]-1,3dithiol-2-one (1) emerged as a possible building block for synthesis of 2-D conductive metallopolymer or complex owing to its unique structure and ease of converting into dithiolate ligands under basic conditions to form metal-bis-dithiolene complex;4 Another important aspect of the compound is the possibility of forming tetrathiafulvalene (TTF) or 2-thieno[3,4-d]-1,3-dithiol-2-ylidenethieno[3,4-d]-1,3-dithiole (dithiophene-tetrathiafulvalene, DTTTF) like compounds through direct coupling. TTF charge-transfer salts are well known as good candidates for superconductive materials.^{5,6} Therefore, the functionalization of **1** to afford key monomers for either cross-coupling polymerization⁷ or two-step precursor polymerization^{8–12} becomes a crucial step in the process of searching high-performance conductive polymers.

We report here synthesis of a series of thieno[3,4-d]-1,3-dithiol-2-one derivatives through halogenation, chloromethylation, and subsequent nucleophilic substitution reactions. All

functionalization reactions occurred at 4 and/or 6 position(s) to maintain the annulated structure of thieno[3,4-d]-1,3-dithiol-2-one. These compounds might be good candidates to prepare conjugated polythiophene derivatives and/or thiophene-base metallopolymers.

2. Results and discussion

Compound **1** was prepared by oxidation of thieno[3,4-*d*]-1,3-dithiole-2-thione with mercury(II) acetate, in less than 20% overall yield. ¹³ A modified one-pot method based on the literature was used in our laboratory and gave a 48% yield from 3,4-dibromothiophene as starting material. ¹³⁻¹⁵

Halogenation reaction of compound **1** with mild halogenated reagents such as N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), and N-iodosuccinimide (NIS), can selectively functionalize the 4 and/or 6 positions and give a variety of halogenated products with fairly good yields and stability (Scheme 1). Results of these reactions are listed in Table 1. Dibrominated compound **2d** was reported by direct bromination reaction of compound **1** with Br_2 in carbon tetrachloride, which afforded 95% yield. Diiodinated compound **2f** could be synthesized through a two-step procedure, which involves treating compound **1** with mercury acetate at room temperature to give 4,6-diacetoxymercuri-thieno[3,4-d]-1,3-dithiol-2-one (compound **2g**), followed by iodination in dry acetonitrile to afford **2f** with an overall yield of 60% after column purification.

Among all bifunctional thiophene derivatives, 2,5-bis(chloromethyl)thiophene is regarded as a useful key compound toward

^{*} Corresponding author. Tel.: +1 817 272 1021; fax: +1 817 272 2538. E-mail address: elsenbaumer@uta.edu (R.L. Elsenbaumer).

Scheme 1. General procedure to prepare halogenated derivatives of thieno[3,4-*d*]-1.3-dithiol-2-one.

Table 1Halogenated derivatives of thieno[3,4-d]-1,3-dithiol-2-one (1)

Compound	X	Y	Yield (%)	Mp (°C)
2a	Cl	Н	72	95-96
2b	Cl	Cl	84	112-113
2c	Br	Н	81	100-101
2d	Br	Br	87	130-131
2e	I	Н	68	114-115
2f	I	I	82	185–186

the formation of various 2,5-bis-substituted thiophenes.^{17,18} The chloromethylation reaction of thieno[3,4-*d*]-1,3-dithiol-2-one (1) proceeded similarly as the chloromethylation of thiophene, and afforded 4,6-bis(chloromethyl)thieno[3,4-*d*]-1,3-dithiol-2-one (3a) with good yields (58%). It can be readily converted into other functionalized derivatives via nucleophilic reactions (Scheme 2). Nucleophilic substitution reactions were explored in transforma-

Scheme 3. 4,4′,6,6′-Tetra(diethoxyphosphorylmethyl)-2-(thieno[3,4-*d*]-1,3-dithiol-2-ylidene)thieno[3,4-*d*]-1,3-dithiole.

tion of **3a** into various derivatives having different functional groups, the results are summarized in Table 2. The coupling reaction of **3a** with triethyl phosphite gave an unique compound 4,4′,6,6′-tetra(diethoxyphosphorylmethyl)-2-(thieno[3,4-d]-1,3-dithiol-2-ylidene)thieno[3,4-d]-1,3-dithiole (**4**) in 32% yield. The compound possesses a core structure of DTTTF, which is shown in Scheme 3.

In summary, we have demonstrated the synthesis of thieno [3,4-d]-1,3-dithiol-2-one derivatives through halogenation, chloromethylation, and nucleophilic substitution reactions. The successful synthesis of these thiophene-based entities might lead to preparation of some unique conductive polymers, metallopolymers, and/or TTF-system materials. The study of polymerization of these derivatives to obtain conjugated conductive materials is still under investigation in our lab. The results will be reported in a timely manner.

Scheme 2. Synthesis of 4,6-bis(chloromethyl)thieno[3,4-*d*]-1,3-dithiol-2-one (**3a**) and its derivatives.

Table 2 4,6-Bis(chloromethyl)thieno[3,4-*d*]-1,3-dithiol-2-one (**3a**) and its nucleophilic derivatives

Compound	X'	Y'	Yield (%)	Mp (°C)
3a	-CH ₂ Cl	−CH₂Cl	57	108-113 (decomposed)
3b	-CH ₂ OH	-CH ₂ OH	91	105–106
3c	-CHO	-CHO	82	215-216
3d	-CH2N(CH2CH3)2	-CH2N(CH2CH3)2	37	N/A (amber oil)
3e	$-CH_2Py^+(Cl^-)$	$-CH_2Py^+(Cl^-)$	95	>250
3f	-CH ₂ OAc	-CH ₂ OAc	68	119-120
3g	-CH ₂ OCH ₃	-CH ₂ OCH ₃	60	54-55
3h	-CH ₂ SC(S)OCH ₂ CH ₃	-CH ₂ SC(S)OCH ₂ CH ₃	97	98-100
3i	-CH2SC(S)N(CH2CH3)2	-CH2SC(S)N(CH2CH3)2	85	N/A (amber gel)
3j	$-CH_2P^+(Ph)_3(Cl^-)$	$-CH_2P^+(Ph)_3(Cl^-)$	95	>250
3k	-CH ₂ SPh	-CH ₂ SPh	75	94-96
31	-CH ₂ S(O)Ph	-CH ₂ S(O)Ph	78	183-184
3m	-CH ₂ SPh	-CH ₂ S(O)Ph	83	152-154
3n	-CH ₂ Cl	-CH ₂ OAc	38	88-89
30	-CH ₂ Cl	-CH ₂ OS(O)Ph	68	136-137

Acknowledgment

Financial support from the Robert A. Welch Foundation (Y-1291) is sincerely appreciated.

Supplementary data

Supplementary data (detailed experimental procedures and NMR spectra of all new compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.03.225.

References and notes

- 1. Handbook of Conductive Polymers; Skotheim, T. A., Elsenbaumer, R. L., Reynolds, I. R., Eds., 2nd ed.; Marcel Dekker: New York, NY, 1997.
- Handbook of Organic Conductive Molecules and Polymer; Nalwa, H. S., Ed.; John Wiley & Sons: Chichester, UK, 1997; Vol. 4.
- 3. Pickup, P. G. J. Mater. Chem. 1999, 8, 1641.

- 4. Kean, C. L.; Pickup, P. G. Chem. Commun. 2001, 815.
- Skabara, P. J.; Berridge, R.; McInnes, E. J. L.; West, D. P.; Coles, S. J.; Hursthouse, M. B.; Muellen, K. J. Mater. Chem. 2004, 14, 1964.
- Organic Superconductors; Ishiguro, T., Yamaji, K., Saito, G., Eds., 2nd ed.; Springer: Berlin, Heidelberg, 1998.
- 7. Yamamoto, T. J. Organomet. Chem. 2002, 652, 195.
- 8. Kean, C. L.; Miller, D. O.; Pickup, P. G. J. Mater. Chem. 2002, 12, 2949.
- 9. Cheng, H.; Elsenbaumer, R. L. J. Chem. Soc., Chem. Commun. 1995, 1451.
- 10. Fu, Y.; Cheng, H.; Elsenbaumer, R. L. Chem. Mater. 1997, 9, 1720.
- Jen, K. Y.; Maxfield, M.; Shacklette, L. W.; Elsenbaumer, R. L. J. Chem. Soc., Chem. Commun. 1987, 309.
- Jen, K. Y.; Jow, T. R.; Eckhardt, H.; Elsenbaumer, R. L. Polym. Mater. Sci. Eng. 1987, 56, 49.
- 13. Chiang, L. Y.; Shu, P.; Holt, D.; Cowan, D. J. Org. Chem. 1983, 48, 4713.
- 14. Gronowitz, S.; Moses, P. Acta Chem. Scand. 1962, 16, 105.
- 15. Rasheed, K.; Warkentin, J. D. J. Heterocycl. Chem. 1981, 18, 1581.
- Skabara, P. J.; Roberts, D. M.; Ray, A. K.; Umare, S. S.; Hassan, A. K.; Nabok, A. V.; Mullen, K. Mat. Res. Soc. Symp. Proc. 2002, 665, 45.
- 17. Griffing, J. M.; Salisbury, L. F. J. Am. Chem. Soc. 1948, 70, 3416.
- Tsuzuki, H.; Maeda, T.; Yonemitsu, T.; Mukumoto, M.; Mataka, S.; Tashiro, M. Sogo Rikogaku Kenkyuka Hokoku (Kyushu Daigaku Daigakuin) 1993, 15, 181.